Abstract

Spectral-domain optical coherence tomography (SD-OCT) is an interferometric optical tomography technique and provides high resolution and noninvasive visualization of retinal morphology. The purpose of this study was to assess the utility of thickness maps and quantitative thickness measurements of the ganglion cell complex (GCC: retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer) obtained by SD-OCT of a mouse model of N-methyl-d-aspartate (NMDA)-induced retinal damage. SD-OCT imaging was performed in ddY mice at 1, 3, and 7 days and 1 month after intravitreal injection of NMDA. GCC thickness maps and circle cross-sectional OCT images were made from volumetric OCT images. The GCC thickness was measured on a cross-sectional OCT image on a circle with a radius 300 μm from the center of the optic nerve disc. Histological analysis was conducted by measuring the GCC thickness at the same time intervals. The thickness maps and the quantitative thickness values of GCC showed thickness changes at each time point in the NMDA-treated mice when compared with normal and vehicle-treated mice. Both the OCT sectional images and the histological images revealed increases in GCC thickness at 1 day, followed by decreases from 3 days to 1 month after NMDA injection. The GCC thickness measured using OCT sectional images correlated with the thickness measured using histological images. In conclusion, GCC thickness mapping is a useful method for evaluating NMDA-induced retinal degeneration in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.