Abstract

This paper presents experimental and numerical investigations on ballistic impact behaviors of GLARE 5 fiber-metal laminated (FML) beams of various thicknesses. A high-speed camera was used to measure impact and residual/rebound velocities and also to assess damage evolution in the FMLs. The incident projectile impact velocity versus the residual velocity (VI–VR) was plotted and numerically fitted according to the classical Lambert–Jonas equation for the determination of ballistic limit velocity, V50. The results showed that the V50 varied in a parabolic trend with respect to the metal volume fraction (MVF) and specimen thickness. The interfacial debonding as well as bending and stretching in aluminum layers played the significant roles in dissipating the impact energy in the GLARE 5 FML beams. The 3D finite element (FE) code, LS-DYNA, was used to model and validate the experimentally obtained results. Good agreement between experimental and numerical results was achieved. It was found that for a given specimen configuration, by increasing the projectile incident velocity up to its V50, the maximum contact force increased. By further increasing the projectile velocity above its V50, the maximum contact force was relatively invariant with respect to an increase in the projectile incident velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call