Abstract
We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies. The spectral density of states (DOS) near EF of ~6 L and 1 L is suppressed as it approaches EF in contrast to that of ~9 L, which is consistent with the Ru 3 d core-level shift indicating the reduction of the metallic conductivity. A power law g(ε) ∝ |ε − εF|α well reproduces the observed spectral DOS of ~6 L and 1 L. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L.
Highlights
IntroductionWe investigated how the electronic structure evolves from the mono- (1 L) to few layered Ru nanosheets ~6 and ~9 L on Si substrate by performing photoemission spectroscopy in order to clarify the mechanism of the disappearance of the metallic conductivity
We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies
We investigated how the electronic structure evolves from the mono- (1 L) to few layered Ru nanosheets ~6 and ~9 L on Si substrate by performing photoemission spectroscopy in order to clarify the mechanism of the disappearance of the metallic conductivity
Summary
We investigated how the electronic structure evolves from the mono- (1 L) to few layered Ru nanosheets ~6 and ~9 L on Si substrate by performing photoemission spectroscopy in order to clarify the mechanism of the disappearance of the metallic conductivity. We observed the chemical shifts of Ru 3 d core-level spectra and the suppression of the spectral weight at Fermi-level (EF) with decreasing the number of stacking layers. These indicate the disappearance of the metallic conductivity in the mono-layered Ru nanosheets. The evolution of the power factor α suggests that the transition from the metallic state of ~9 L to the 2-dimensional insulating state with the soft Coulomb gap of 1 L through the disordered 3-dimensional metallic state of ~6 L
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.