Abstract

This work reports a systematic study of the evolution of charge transport properties in granular ultra-thin films of palladium of thicknesses varying between 6 nm and 2 nm. While the films with thickness >4 nm exhibit metallic behaviour, that at 3 nm thickness undergoes a metal-insulator transition at 19.5 K. In contrast, the 2 nm thick film remained insulating at all temperatures, with transport following Mott's variable range hopping. At room temperature, while the thicker films exhibit resistance decrease upon H2 exposure, the insulating film showed an anomalous initial resistance increase before switching to a subsequent decrease. The nanostructure dependent transport and the ensuing H2 response is modeled on a percolation model, which also explores the relevance of film thickness as a macroscopic control parameter to engineer the desired system response in granular metal films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.