Abstract

Multistage forming is one of the most practical solutions to avoid severe thinning in single point incremental forming (SPIF). A successful implementation of multistage SPIF is strongly dependent on an appropriate deformation path. In this paper, firstly, a simplified modeling technique is proposed using sequential limit analysis. It is shown that sequential limit analysis can predict the thickness distribution faster than an equivalent model in a commercial finite element modeling code like Abaqus can. The reliability of the model is assessed by comparing experimental and simulated results for single-stage and multistage SPIF cones. This model is utilized to study the effect of various deformation paths on the thickness distribution. As a result, a new multistage strategy is designed and implemented to form a 70° wall angle cone in three stages. The thickness distribution of the cone is improved significantly compared to cones formed by a single-stage and a conventional three-stage strategy. Besides this improvement, the new multistage SPIF can be carried out in much less time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.