Abstract

The effect of the film thickness on the phase transformations encountered in sputtered titanium-nickel (TiNi) shape-memory films due to thermal cycling in the temperature range of −150 to 150 °C was examined in the context of electrical resistivity (ER) measurements. A hysteresis in the ER response was observed for film thickness greater than 300 nm. This phenomenon is characteristic of shape-memory materials and is attributed to the rhombohedral (R) phase produced during cooling from the high-temperature cubic austenite phase to the low-temperature monoclinic martensite phase. The decrease of the TiNi film thickness below 300 nm resulted in a smaller ER hysteresis, leading eventually to its disappearance for film thickness less than ∼50 nm. The results indicate that spatial constraints introduced by the film surface and film/substrate interface generate a resistance force, which prevents lattice distortion and twinning. The inhibition of these mechanisms, which control self-accommodation R-phase transformation, leads to the suppression and eventual disappearance of the shape memory effect for film thickness less than ∼100 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.