Abstract
Small, fresh lunar craters with normal, central-mound, flat-bottomed, and concentric geometry are widespread on maria surfaces. The same types of craters have been produced in the laboratory by impacting projectiles against targets consisting of loose, granular, noncohesive materials overlying cohesive substrates. The mechanics of formation of each laboratory crater type is described, and evidence is offered that the corresponding types of lunar craters are of impact origin. Extensive studies of the effects of lunar impact variables on the conditions of formation of these crater types show that a previously described statistical method can be used to determine the thickness of the lunar surfaces layer within narrow limits. Two independent methods for determining the layer thickness at specific points are presented. Thickness estimates of the Surveyor 1 site obtained previously from study of medium-resolution Orbiter 1 photographs are re-evaluated by using subsequently obtained high-resolution photographs, and thickness determinations of two additional areas are presented. The different areas examined have different surface layer thickness. The fragments of the surface are certainly partly of impact origin, but volcanic contributions may also be present. The maria substrates are probably composed of volcanic flow rocks with interbeds of fragmental material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.