Abstract

The influence of film thickness on the formation of twinning structure, martensitic transformation and magnetoelastic properties of epitaxial films of Ni(Co)MnSn magnetic shape memory alloy is investigated by means of ferromagnetic resonance spectroscopy, synchrotron X-ray diffraction and standard magnetic measurements. It is found that constraints from the film/substrate interface block the martensitic transformation in the 20 nm thick film. The increase of the film thickness results in a progressive stress relaxation and, as a result, the martensitic transformation becomes possible starting from 50 nm. Twinning of the films is required to conserve the films surface area. The elastic energy balance between the film/substrate interface and the twin boundaries leads to the formation of a submicron wide, stripe like, periodical structure of twins, which is of interest for spintronic or magnonic applications. The width of the twin variants increases with the film thickness growth, resulting in the dramatic modification of magnetic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.