Abstract
We have investigated the photoluminescence (PL) dynamics of ZnO thin films under intense excitation conditions using an optical-Kerr-gating method. The PL bands originating from exciton-exciton scattering (P emission) and biexciton (M emission) have been observed at 10 K. The ultrashort gating time of 0.6 ps has enabled us to obtain precise information of the temporal profiles of the peak energies and the intensities of the P- and M-PL bands. We have found that the decay time of the P emission becomes longer with increasing film thickness, while that of the M emission is independent of the film thickness. Although the decay time of the P emission is an increasing function of the film thickness, the relation is not in proportion, which is contrary to the predicted proportionality based on a simple model of photon-like polariton propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.