Abstract

The behavior of 2-dimensional (2D) van der Waals (vdW) layered magnetic materials in the 2D limit of the few-layer thickness is an important fundamental issue for the understanding of the magnetic ordering in lower dimensions. The antiferromagnetic transition temperature TN of the Heisenberg-type 2D magnetic vdW material MnPS3 was estimated as a function of the number of layers. The antiferromagnetic transition was identified by temperature-dependent Raman spectroscopy, from the broadening of a phonon peak at 155 cm−1, accompanied by an abrupt redshift and an increase of its spectral weight. TN is found to decrease only slightly from ~78 K for bulk to ~66 K for 3L. The small reduction of TN in thin MnPS3 approaching the 2D limit implies that the interlayer vdW interaction is playing an important role in stabilizing magnetic ordering in layered magnetic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.