Abstract

This paper presents a non-invasive microwave method based on a square-shaped complementary split-ring resonator (CSRR) to measure the thickness and permittivity of multilayer dielectric structures. The CSRR sensor is etched on the ground plane of a microstrip line. The change of resonance frequency depends on the thickness and permittivity of the multilayer dielectric sample below the ground plane. For resolution analysis, the resonance frequency shifts caused by a variation of permittivity (Δε = 0.01) and thickness (Δd=0.01 mm) in the detection layer were compared across various design dimensions. Sensor size optimization improved the resolution in permittivity and thickness measurement by 66% and 37%, respectively. Subsequently, the permittivity and thickness resolution was improved by 28% and 16%, respectively, by optimizing the separation of the etched CSRRs. The analysis results show that a CSRR sensor can be designed with excellent resolution in core layer permittivity changes and thickness resolution in multilayered dielectric structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.