Abstract

We prove new upper bounds for the thickness and outerthickness of a graph in terms of its orientable and nonorientable genus by applying the method of deleting spanning disks of embeddings to approximate the thickness and outerthickness. We also show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This implies that the outerthickness of the torus (the maximum outerthickness of all toroidal graphs) is 3. Finally, we show that all graphs embeddable in the double torus have thickness at most 3 and outerthickness at most 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.