Abstract

Abstract We investigate theoretically the dependence of energy transfer rate in Double-Quantum-Well system on the well thickness by using the balance equation formalism. Also, by including the local field correction in our calculations through the zero- and finite-temperature Hubbard approximations, we study the effect of the short-range interactions on the energy transfer phenomenon. Calculations consider both the static and dynamic screening approximations. Our numerical results predict that the energy transfer rate increases considerably by increasing the layers' thicknesses and by taking into account the short-range interactions, as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call