Abstract

AbstractThe geometric thickness \(\bar\theta\)(G) of a graph G is the smallest integer t such that there exist a straight-line drawing Γ of G and a partition of its straight-line edges into t subsets, where each subset induces a planar drawing in Γ. Over a decade ago, Hutchinson, Shermer, and Vince proved that any n-vertex graph with geometric thickness two can have at most 6n − 18 edges, and for every n ≥ 8 they constructed a geometric thickness two graph with 6n − 20 edges. In this paper, we construct geometric thickness two graphs with 6n − 19 edges for every n ≥ 9, which improves the previously known 6n − 20 lower bound. We then construct a thickness two graph with 10 vertices that has geometric thickness three, and prove that the problem of recognizing geometric thickness two graphs is NP-hard, answering two questions posed by Dillencourt, Eppstein and Hirschberg. Finally, we prove the NP-hardness of coloring graphs of geometric thickness t with 4t − 1 colors, which strengthens a result of McGrae and Zito, when t = 2.KeywordsPlanar GraphComplete GraphPlanar LayerGeometric GraphPlanar DrawingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.