Abstract
The cell envelope of Gram-negative bacteria is composed of an outer membrane (OM) and an inner membrane (IM) and a peptidoglycan cell wall (CW) between them. Combined with Braun's lipoprotein (Lpp), which connects the OM and the CW, and numerous membrane proteins that exist in both OM and IM, the cell envelope creates a mechanically stable environment that resists various physical and chemical perturbations to the cell, including turgor pressure caused by the solute concentration difference between the cytoplasm of the cell and the extracellular environment. Previous computational studies have explored how individual components (OM, IM, and CW) can resist turgor pressure although combinations of them have been less well studied. To that end, we constructed multiple OM-CW systems, including the Lpp connections with the CW under increasing degrees of strain. The results show that the OM can effectively resist the tension imposed by the CW, shrinking by only 3-5% in area even when the CW is stretched to 2.5× its relaxed area. The area expansion modulus of the system increases with increasing CW strain, although the OM remains a significant contributor to the envelope's mechanical stability. Additionally, we find that when the protein TolC is embedded in the OM, its stiffness increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.