Abstract

This study aims to investigate the effect of age on the peripapillary retinal nerve fiber layer (p-RNFL) thickness among schoolchildren. A total of 4034 children aged 6–8 years old received comprehensive ophthalmological examinations. p-RNFL thickness was measured from a circular scan (⌀ = 3.4 mm) captured using spectral-domain optical coherence tomography (SD-OCT). Associations between p-RNFL thickness with ocular and systemic factors were determined by multivariate linear regression after adjusting potential confounders using generalized estimating equations (GEE). The mean global p-RNFL thickness was 106.60 ± 9.41 μm (range: 72 to 171 μm) in the right eyes, 105.99 ± 9.30 μm (range: 76 to 163 μm) in the left eyes, and 106.29 ± 9.36 μm (range: 72 to 171 μm) across both eyes. Age was positively correlated with p-RNFL after adjusting for axial length (AL) and confounding factors (β = 0.509; p = 0.001). Upon multivariable analysis, AL was positively associated with temporal p-RNFL thickness (β = 3.186, p < 0.001) but negatively with non-temporal p-RNFL thickness (β = (10.003, −2.294), p < 0.001). Sectoral p-RNFL was the thickest in the inferior temporal region (155.12 ± 19.42 μm, range 68 to 271 μm), followed by the superior temporal region (154.67 ± 19.99 μm, range 32 to 177 μm). To conclude, p-RNFL increased significantly with older age among children 6 to 8 years old in a converse trend compared to adults. Our results provide a reference for interpreting OCT information in children and suggest that stable p-RNFL thickness may not indicate a stable disease status in pediatric patients due to the age effects.

Highlights

  • Optic neuropathies in children lead to poor vision and even blindness as a result of conditions including glaucoma, optic nerve hypoplasia, and optic neuritis [1,2]

  • We found that age was positively correlated with global peripapillary retinal nerve fiber layer (p-retinal nerve fiber layer (RNFL)) thickness (p = 0.001)

  • We propose that the increases in superior and inferior p-RNFL thickness among children could be attributed to an increase in axon diameter, glial cell proliferation, and/or formation of the radial peripapillary capillary network [10]

Read more

Summary

Introduction

Optic neuropathies in children lead to poor vision and even blindness as a result of conditions including glaucoma, optic nerve hypoplasia, and optic neuritis [1,2]. Structural investigation of the retinal layers by optical coherence tomography (OCT) is widely used. OCT is a non-contact medical imaging technology using reflected light to produce a detailed crosssectional image of the eye [3,4]. It provides non-invasive, reproducible, high-resolution, and in vivo measurements of the retina and retinal nerve fiber layer (RNFL) for adults and children [5]. RNFL is an ocular structure containing ganglion cell axons, which are important components of the optic nerve. The attenuation of the peripapillary retinal nerve fiber layer (p-RNFL) is an early sign of loss of optic nerve tissue, which can be effectively detected by OCT

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call