Abstract
Introduction. Cylindrical and spherical shells are extensively used in engineering. They face internal and/or external pressure and heat. Stresses and strains distribution in elastoplastic shells has been studied by many scientists. Numerous works involve the use of the von Mises yield conditions, maximum shear stress, maximum reduced stress. These condi- tions do not include the dependence on the first invariant of the stress tensor and the sign of the third invariant of the stress deviator. In some cases, it is possible to obtain numerical-analytical solutions for stresses, displacements and de- formations for bodies with spherical and cylindrical symmetry under axisymmetric thermal and force action. Materials and Methods. The problem on the state of a thick-walled elastoplastic shell is solved within the framework of the theory of small deformations. A plasticity condition is proposed, which takes into account the dependence of the stress tensor on three independent invariants, and also considers the sign of the third invariant of the stress deviator and translational hardening of the material. A disconnected thermoelastoplastic problem is being solved. To estimate the stresses in the region of the elastic state of a spherical shell, an equivalent stress is introduced, which is similar to the selected plasticity function. The construction of the stress vector hodograph is used as a method for verification of the stress state. Results. The problem has an analytical solution for linear plasticity functions. A solution is obtained when the strength- ening of the material is taken into account. Analytical and graphical relationships between the parameters of external action for the elastic or elastoplastic states of the sphere are determined. For a combined load, variants are possible when the plastic region is generated at the inner and outer boundaries of the sphere or between these boundaries. Discussion and Conclusions. The calculation results have shown that taking into account the plastic compressibility and the dependence of the plastic limit on temperature can have a significant impact on the stress and strain state of a hollow sphere. In this case, taking into account the first invariant of the stress tensor under the plasticity condition leads to the fact that not only the pressure drop between the outer and inner boundaries of the spherical shell, but the pressure values at these boundaries, can vary within a limited range. In this formulation of the problem, when there is only thermal action, the hollow sphere does not completely pass into the plastic state. The research results provide predicting the behavior of an object (a hollow sphere) that experiences centrally symmetric distributed power and thermal external influences.
Highlights
Cylindrical and spherical shells are extensively used in engineering
Numerous works involve the use of the von Mises yield conditions, maximum shear stress, maximum reduced stress. These conditions do not include the dependence on the first invariant of the stress tensor and the sign of the third invariant of the stress deviator
A plasticity condition is proposed, which takes into account the dependence of the stress tensor on three independent invariants, and considers the sign of the third invariant of the stress deviator and translational hardening of the material
Summary
Предложено условие пластичности, учитывающее зависимость от трех инвариантов тензора напряжений, а также знак третьего инварианта девиатора напряжений и трансляционное упрочнение материала. Для оценки напряжений в области упругого состояния сферической оболочки вводится эквивалентное напряжение, равное выбираемой функции пластичности. Для линейных функций пластичности задача имеет аналитическое решение. Определены аналитические и графические зависимости между параметрами внешнего воздействия для упругого и упругопластического состояния шара. В случае комбинированной нагрузки возможны варианты, когда пластическая область зарождается на внутренней, внешней границах шара или между этими границами. Результаты вычислений показали, что учет пластической сжимаемости и зависимости предела пластичности от температуры может оказать существенное влияние на напряженное и деформированное состояние полого шара. При этом учет первого инварианта тензора напряжений в условии пластичности приводит к тому, что не только перепад давления между внешней и внутренней границами сферической оболочки, но и значения давлений на этих границах могут изменяться в ограниченном диапазоне.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.