Abstract

In efforts to increase the energy density of lithium-ion batteries, researchers have attempted to both increase the thickness of battery electrodes and increase the relative fractions of active material. One system that has both of these attributes are sintered thick electrodes comprised of only active material. Such electrodes have high areal capacities, however, detailed understanding is needed of their transport properties, both electronic and ionic, to better quantify their limitations to cycling at higher current densities. In this report, efforts to improve models of the electrochemical cycling of sintered electrodes are described, in particular incorporation of matrix electronic conductivity which is dependent on the extent of lithiation of the active material and accounting for initial gradients in lithiation of active material in the electrode that develop as a consequence of transport limitations during charging cycles. Adding in these additional considerations to a model of sintered electrode discharge resulted in improved matching of experimental cell measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.