Abstract

We investigate the spacetime of a thick gravitating domain wall for a general potential V(). Using general analytical arguments we show that all nontrivial solutions fall into two categories: those interpretable as an isolated domain wall with a cosmological event horizon, and those which are pure false vacuum de Sitter solutions. Although this latter solution is always unstable to the field rolling coherently to its true vacuum, we show that there is an additional instability to wall formation if the scalar field does not couple too strongly to gravity. Using the 4 and sine-Gordon models as illustrative examples, we investigate the phase space of the gravitating domain wall in detail numerically, following the solutions from weak to strong gravity. We find excellent agreement with the analytic work. Then, we analyse the domain wall in the presence of a cosmological constant finding again the two kinds of solutions, wall and de Sitter, even in the presence of a negative cosmological constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.