Abstract

Thickness corrections to static, axisymmetric Dirac–Nambu–Goto branes embedded into spherically symmetric black hole spacetimes with arbitrary number of dimensions are studied. First, by applying a perturbative approximation, it is found that the thick solutions deviate significantly in their analytic properties from the thin ones near the axis of the system, and perturbative approaches around the thin configurations can not provide regular thick solutions above a certain dimension. For the general case, a non-perturbative, numerical approach is applied and regular solutions are obtained for arbitrary brane and bulk dimensions. As a special case, it has been found that two-dimensional branes are exceptional, as they share their analytic properties with the thin branes rather than the thick solutions of all other dimensions.KeywordsBlack HoleRegular SolutionPerturbation EquationPerturbative ApproachHigh Dimensional Black HoleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call