Abstract

We study a smooth cosmological solution within a generalized 5D standing wave braneworld modeled by gravity and a phantom scalar field. In this model the 3-brane is anisotropically warped along its spatial dimensions and contains a novel time-dependent scale factor that multiplies the anisotropic spatial interval of the 5D metric, a fact that allows us to study cosmological effects. By explicitly solving the bulk field equations we found a natural mechanism which isotropizes the braneworld for a wide class of natural initial conditions. We are able to give a physical interpretation of the anisotropic dissipation: as the anisotropic energy of the 3-brane rapidly leaks into the bulk through the nontrivial components of the nonlocal Weyl tensor projected to the brane, the bulk becomes less isotropic. At the same time, under the action of the 4D cosmological constant, the anisotropic braneworld super-exponentially isotropizes by itself, rendering a 3-brane with de Sitter symmetry embedded in a 5D de Sitter space-time, while the phantom scalar field exponentially vanishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.