Abstract

Thiazolopyrimidines are well known to be designed to act as bio-isosteric analogues of purine nucleus. They proved to show a wide range of biological activities, such as anticancer, anti-inflammatory, antifungal, antiviral and antitubercular activity. In this study, a literature survey was thoroughly performed to elect the most active thiazolopyrimidine-containing scaffolds, acting as anticancer agents, to be subjected to extensive computational studies in order to explore the possible credible mode of their anticancer activity. First, drug-likeness was investigated for the most active derivatives, followed by molecular docking study against Cyclin-dependent kinases (CDK), Vascular endothelial growth factor receptor (VEGFR) and Phosphoinositide 3-kinases (PI3K) enzymes in order to assess their binding energy and propose the mode of action. Next, contact preference and surface mapping studies were carried out to explain the presence of remarkable affinity of certain analogues towards a specific enzyme, in addition to providing more information about their activity. Finally, physicochemical properties, Lipinski’s rule of five and ADMET prediction studies were applied to predict the best route of administration and to suggest the pharmacokinetics of the most promising candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call