Abstract

The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.

Highlights

  • Multi-species biofilm communities are abundant in the human body

  • Data obtained by the MTT assay demonstrated results similar to qPCR dosedependent inhibition of dual species biofilm by S-8

  • S-8 at dose of 16 μg/ml leads to the alteration of yeast–to-hyphae transition resulting in the appearance of mainly yeast form of C. albicans (&, blue arrow) (Figure 3C)

Read more

Summary

Introduction

Multi-species biofilm communities are abundant in the human body. These multi microbial communities play both beneficial and detrimental roles in host homeostasis. As part of a mutual microenvironments, these microorganisms cross-communicate with each other, adjust their population density and continuously adapt to the external and internal changes in the biofilm by altering gene expression patterns. The oral cavity is colonized by numerous of different microbial species. The majority of those microbes reside in biofilms which are attached to variety of oral surfaces. Because of its multispecies nature, the oral microbial community is one of the best biofilm models for the investigation of interspecies interactions (Kolenbrander, 2000)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.