Abstract
Silver ions have been widely applied to many fields and have harmful effects on environments and human health. Herein, a label-free optical sensor for Ag+ detection is constructed based on thiazole orange (TO) as a fluorescent probe for the recognition of i-motif DNA structure change at neutral pH. Ag+ can fold a C-rich single stranded DNA sequence into i-motif DNA structure at neutral pH and that folding is reversible by chelation with cysteine (Cys). The DNA folding process can be indicated by the fluorescence change of TO, which is non-fluorescent in free molecule state and emits strong fluorescence after the incorporation with i-motif DNA. Thus, a rapid, sensitive, and selective method for the detection of Ag+ and Cys is developed with a detection limit of 17 and 280nM, respectively. It is worth noting that the mechanism underlying the increase of the fluorescence of thiazole orange in the presence of i-motif structure is explained. Moreover, a fluorescent DNA logic gate is successfully designed based on the Ag+/Cys-mediated reversible fluorescence changes. The proposed detection strategy is label-free and economical. In addition, this system shows a great promise for i-motif/TO complex to analyze Ag+ in the real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.