Abstract

n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.