Abstract
Peptide nucleic acids (PNAs), besides hybridizing to complementary DNA and RNAs, bind and stabilize DNA secondary structures. Herein, we illustrate the design and synthesis of PNA-like scaffolds by incorporating five-membered thiazole rings as modified bases instead of nucleobases and their subsequent effects on gene regulation by biophysical and in vitro assays. A thiazole-modified PNA trimer selectively recognizes c-MYC G-quadruplex (G4) DNA over other G4s and duplex DNA. It displays a high stabilization potential for the c-MYC G4 DNA and shows remarkable fluorescence enhancement with the c-MYC G4. It is flexible enough to bind at 5' and 3' ends as well as in the groove region of c-MYC G4. Furthermore, the PNA trimer easily permeates the cellular membrane and suppresses c-MYC mRNA expression in HeLa cells by targeting the promoter G4. This study illuminates modified PNAs as flexible molecular tools for selective targeting of noncanonical nucleic acids and modulating gene function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.