Abstract

Thiamine (vitamin B1, VB1) can act as a plant defence trigger, or priming agent, leading to a rapid counterattack on pathogen invasion. In this study, the priming effect of thiamine on rice (Oryza sativa cv. Nipponbare) and its activity against root-knot nematode (Meloidogyne graminicola) infection were evaluated. Thiamine treatment and subsequent nematode inoculation activated hydrogen peroxide (H2O2) accumulation and lignin deposition in plant roots, and this correlated with enhanced transcription of OsPAL1 and OsC4H, two genes involved in the phenylpropanoid pathway. The number of nematodes in rice roots was slightly but significantly reduced, and the development of the nematodes was delayed, whereas no direct toxic effects of VB1 on nematode viability and infectivity were observed. The combined application of thiamine with l-2-aminooxy-3-phenylpropionic acid (AOPP), an inhibitor of phenylalanine ammonia-lyase (PAL), significantly hampered the VB1-priming capacity. These findings indicate that thiamine-induced priming in rice involves H2O2 and phenylpropanoid-mediated lignin production, which hampers nematode infection. Further cellular and molecular studies on the mechanism of thiamine-induced defence will be useful for the development of novel nematode control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call