Abstract

As part or a systematic study of alcoholism and thiamine absorption, the effect of diet-induced thiamine deficiency and the role of the unstirred water layer on thiamine transport were investigated. Using 3H-labeled dextran as a marker of adherent mucosal volume, jejunal uptake of 14C-labeled thiamine hydrochloride was measured, in vitro, in thiamine-deficient rats and pair-fed controls. Uptake of low thiamine concentrations (0.2 and 0.5 μM) was greater in the thiamine-deficient rats thatn in the controls. In contrast, uptake rates for high thiamine concentrations (20 and 50 μM) were similar in both groups. While ∗J max was unaltered, ∗K m was decreased in thiamine deficiency, suggesting a decrease in unstirred water layer thickness. Accordingly, the thickness of the water layer was measured in both groups of animals and correlated with ∗J max and ∗K m under unstirred and st irred conditions. Without stirring, there was no difference in ∗J max between the two groups. In contrast, both ∗K m and the water layer were reduced in the thiamine-deficient rats. With stirring, ∗J max was not affected, but both ∗K m and the water layer thickness were reduced to similar values in both groups. Reversal of thiamine deficiency resulted in the return of thiamine uptake and the unstirred water layer thickness to control values. These data support the concept of a dual system of thiamine transport and emphasize the role of the unstirred water layer as an important determinant of transport kinetics not only under physiologic situations but also in diet-induced rat thiamine deficiency, a model for a clinical pathological state. The decrease in the unstirred water layer thickness in thiamine deficiency may be also viewed as a possible adaptive mechanism to facilitate absorption of meager supplies of thiamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.