Abstract

Two novel thiadiazoloquinoxaline and benzodithiophene (BDT) bearing copolymers were designed and synthesized. Different BDT units (alkoxy and thiophene substituted) were used as donor materials and the effect of alkoxy and thiophene substitution on the electrochemical, spectroelectrochemical and photovoltaic properties were investigated. Both polymers exhibited low oxidation potentials at around 0.90 V and low optical band gaps at around 1.00 eV due to the insertion of electron poor thiadiazoloquinoxaline unit into the polymer backbone. Both P1 (poly-6,7-bis(3,4-bis(decyloxy)phenyl)-4-(4,8-bis(nonan-3-yloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) and P2 (poly- 4-(4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)-6,7-bis(3,4-bis(decyloxy)phenyl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) exhibited multichromic behavior with different tones of greenish yellow and gray in the neutral and fully oxidized states, respectively. In addition, both polymers revealed very high optical contrasts (∼87%) in the NIR region which make these promising polymers good candidates for NIR applications. Finally, in order to explore the organic photovoltaic performances, P1 and P2 were mixed with PC71BM in the active layer of organic solar cells (OSCs) by conventional device structure. As a result P1 and P2 based devices revealed power conversion efficiencies (PCEs) of 0.33% and 0.60% respectively. However, the additive treatment enhanced PCE from 0.49 to 0.73% for P2 based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.