Abstract

The design and development of effective multitargeted agents in treating Alzheimer disease (AD) has always been a hot topic in the field of drug discovery. Since AD is a multifactorial disorder, various key hidden players such as deficit of acetylcholine (ACh), tau-protein aggregation, and oxidative stress have been associated with the incidence and progress of AD. In pursuit of improving efficacy and expanding the range of pharmacological activities of current AD drugs, the molecular hybridization method is also used intensively. Five-membered heterocyclic systems such as thiadiazole scaffolds have previously been shown to have therapeutic activity. Thiadiazole analogs as an anti-oxidant compound have been known to include a wide range of biological activity from anti-cancer to anti-Alzheimer properties. The suitable pharmacokinetic and physicochemical properties of the thiadiazole scaffold have introduced it as a therapeutic target in medicinal chemistry. The current review portrays the critical role of the thiadiazole scaffold in the design of various compounds with potential effects in the treatment of Alzheimer's disease. Furthermore, the rationale used behind hybrid-based design strategies and the outcomes achieved through the hybridization of Thiadiazole analogs with various core structures have been discussed. In addition, the data in the present review may help researchers in the design of new multidrug combinations that may provide new options for the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.