Abstract

A promising water treatment technology involves inducing the polymerization of organic pollutants to form corresponding polymers, enabling rapid, efficient, and low CO2 emission removal of these pollutants. However, there is currently limited research on utilizing polymerization treatment technology for removing tetracyclines from water. In this study, we synthesized a laccase-mimic nanozyme (Cu-ATZ) with a high Cu+ ratio using 2-amino-1,3,4-thiadiazole as a ligand inspired by natural laccase. The Cu-ATZ exhibited enhanced resistance to more severe application conditions and improved stability compared to natural laccase, thereby demonstrating a broader range of potential applications. The excellent catalytic properties of Cu-ATZ enabled the nanozyme to be used in the polymerization process to remove tetracyclines from water. In order to simulate actual antibiotic pollution of water bodies, tetracyclines were added to the water from sewage treatment plants. Following Cu-ATZ treatment of the water sample, the chemical oxygen demand (COD) content was found to have decreased by over 80 %. In conclusion, this study presented a novel approach for tetracycline elimination from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.