Abstract

Both reaction rate and enantioselectivity in Pseudomonas cepacia lipase (PCL)-catalyzed hydrolysis of 3-hydroxyalkanenitrile acetates were significantly changed by the addition of catalytic amounts of thiacrown ether (1,4,8,11-tetrathiacyclotetradecane). Although the reaction rate of various nitriles was accelerated, the enantioselectivity greatly depended on the nature of the substrate. Among 10 substrates tested, thiacrown ether offered highest enantioselectivity in PCL-catalyzed hydrolysis of 1-(cyanomehtyl)propyl acetate. Forty or more times this crown ether, molarity based on the enzyme, was required to attain an acceptably high reaction rate and enantioselectivity. Applying this technology, we succeeded in synthesizing the optically pure attractant pheromone of ant Myrmica scabrinodis (A), (R)-3-octanol and its antipode of (S)-isomer in good overall yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call