Abstract

Alzheimer's disease (AD) is pathologically characterized by excessive accumulation of amyloid-beta (Aβ) peptide. Evidence suggests that amyloid accumulation can be caused by oxidative stress and inflammatory responses. In this study, we examined neuroprotective effects of thiacremonone, an anti-oxidant and anti-inflammatory compound isolated from garlic. Treatment of thiacremonone significantly attenuated cognitive impairments in amyloid precursor protein (APP)/presenilin 1 (PS1) double-mutant transgenic mice. In addition, activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinase (ERK) pathways in the brain was potently inhibited by thiacremonone. We also observed that thiacremonone significantly inhibited activation of NF-κB and ERK pathways induced by H2O2 and Aβ1-42 in embryonic neuronal cells. Furthermore, thiacremonone augmented peroxiredoxin 6 (PRDX6) expression in vivo and in vitro associated with reduced oxidative stress of macromolecules such as protein and lipids. This study indicates that thiacremonone might exert memory improvement via stimulating anti-oxidant system. These multiple properties could attenuate Aβ accumulation and oxidative stress in Alzheimer's brains. Thus, these results suggest that thiacremonone might be useful to intervene development or progression of neurodegeneration in AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.