Abstract

Simple SummaryThe current study was designed to evaluate the negative impact of thiacloprid (TH) on the brain tissue of developing chicken embryo models and to evaluate the modulatory effects of chicoric (CA) and rosmarinic (RA) acids. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.001). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde (MDA) content, and DNA damage (p < 0.001). Myeloperoxidase (MPO) activity and NO significantly increased with overexpression of the pro-inflammatory cytokines (IFN-γ; interferon gamma, TNF-α; tumor necrosis factor alpha, and IL-1β; interleukin-1 beta), stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both a biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates and possibly humans. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic properties of CA and RA against TH toxicity.Insecticides are widely employed in agriculture to control pests and as major factors for enhancing crop productivity. Thiacloprid (TH) is one of the most-used insecticides worldwide. In this study, the negative impact of TH on the brain tissue of developing chicken embryo models and the modulatory effect of chicoric (CA) and rosmarinic (RA) acids were investigated. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.05). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde content, and DNA damage (p < 0.05). Myeloperoxidase activity and nitric oxide significantly increased with overexpression of the pro-inflammatory cytokines (interferon gamma, tumor necrosis factor alpha, and interleukin-1 beta) and stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates including human. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic property of CA and RA against TH toxicity.

Highlights

  • Insecticides are widely employed in agriculture to control pests and enhance crop productivity

  • Because the oxidative stress biomarkers were modified starting from the exposure to TH1, this dose was chosen for more evaluation

  • Results showed that brain tissue MDA and protein carbonyl contents were significantly higher in TH-treated embryos with respect to the control

Read more

Summary

Introduction

Insecticides are widely employed in agriculture to control pests and enhance crop productivity. The extensive and uncontrolled use of these insecticides can potentially affect the ecological environment, and almost all of them represent a threat to non-target organisms including humans [1]. In the last two decades, the use of neonicotinoids (neonics) spread worldwide, becoming the most important pesticide class currently present in [2] the global market as replacers of carbamates and organophosphates [3]. Neonics mainly act against chewing and sucking parasites, predatory insects, zoophages, and phytophages as well as parasitic infection of pet animals as cats and dogs [7]. As neonics act on the nicotinic acetylcholine receptors of the targeted insect, they showed potential risks to mammalians including humans [8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.