Abstract
As machine learning is deployed in more settings, including in security-sensitive applications such as malware detection, the risks posed by adversarial examples that fool machine-learning classifiers have become magnified. Black-box attacks are especially dangerous, as they only require the attacker to have the ability to query the target model and observe the labels it returns, without knowing anything else about the model. Current black-box attacks either have low success rates, require a high number of queries, produce adversarial images that are easily distinguishable from their sources, or are not flexible in controlling the outcome of the attack. In this paper, we present AdversarialPSO, (Code available: https://github.com/rhm6501/AdversarialPSOImages) a black-box attack that uses few queries to create adversarial examples with high success rates. AdversarialPSO is based on Particle Swarm Optimization, a gradient-free evolutionary search algorithm, with special adaptations to make it effective for the black-box setting. It is flexible in balancing the number of queries submitted to the target against the quality of the adversarial examples. We evaluated AdversarialPSO on CIFAR-10, MNIST, and Imagenet, achieving success rates of 94.9%, 98.5%, and 96.9%, respectively, while submitting numbers of queries comparable to prior work. Our results show that black-box attacks can be adapted to favor fewer queries or higher quality adversarial images, while still maintaining high success rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.