Abstract
Mice deficient in the peripheral myelin component P0 mimic severe forms of inherited peripheral neuropathies in humans, with defective myelin formation and consequent axonal loss. We cross-bred these mice with the spontaneous mutant C57BL/Wld(s) typically showing protection from Wallerian degeneration because of fusion of the ubiquitination factor E4B (Ube4b) and nicotinamide mononucleotide adenylyltransferase (Nmnat) genes. We found that in the double mutants, the robust myelin-related axonal loss is reduced at 6 weeks and 3 months of age. Moreover, retrograde labeling from plantar nerves revealed an increased survival of motor axons. These motor axons appeared functionally active because both the amplitude of compound muscle action potentials and muscle strength were less reduced in the double mutants. At 6 months of age, reduction of axonal loss was no longer detectable in the double mutants when compared with littermates carrying the P0 null mutation only, although the Wld(s) gene was not reduced in its expression at this age. We conclude that myelin-related axonal loss is a process having some features in common with Wallerian degeneration. Introducing the Wld(s) gene would be a promising approach to delaying detrimental axonal loss in myelin disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.