Abstract

In most cases, object recognition is related to the matching of internal memory contents and bottom-up external sensory stimulation. The aim of this study was to investigate the electrophysiological correlates of memory matching based on EEG oscillatory phase synchronization analysis. Healthy subjects completed a delayed-match to sample task in which items stored in visual-spatial short-term memory had to be compared with a matching or non-matching probe. The results show that memory matching appears as transient phase-synchronization over parieto-occipital regions between theta (4–8Hz) and high gamma (50–70Hz) oscillations, 150–200ms post probe presentation. When memory representation and visual information match, phase-synchronization is stronger in the right hemisphere; conversely, when they do not match, stronger phase synchronization is observed in the left hemisphere. The present results reveal the integrative role of oscillatory activity in the memory matching process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.