Abstract
AbstractOne way of realizing representations of the Heisenberg group is by using Fock representations, whose representation spaces are Hilbert spaces of functions on complex vector space with inner products associated to points on a Siegel upper half space. We generalize such Fock representations using inner products associated to points on a Hermitian symmetric domain that is mapped into a Seigel upper half space by an equivariant holomorphic map. The representations of the Heisenberg group are then given by an automorphy factor associated to a Kuga fiber variety. We introduce theta functions associated to an equivariant holomorphic map and study connections between such generalized theta functions and Fock representations described above. Furthermore, we discuss Jacobi forms on Hermitian symmetric domains in connection with twisted torus bundles over symmetric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.