Abstract

The discovery of the second highly r-process-enhanced, extremely metal poor star, CS 31082-001 ([Fe/H] = -2.9) has provided a powerful new tool for determination by virtue of the detection and measurement of the radioactive species uranium and thorium. Because the half-life of 238U is one-third that of 232Th, the U-Th pair can, in principle, provide a far more precise cosmochronometer than the Th-Eu pair that has been used in previous investigations. In the application of this chronometer, the of (the progenitor of) CS 31082-001 can be regarded as the minimum of the Galaxy, and hence of the universe. One of the serious limitations of this approach, however, is that predictions of the production ratio of U and Th have not been made in the context of a realistic astrophysical model of the r-process. We have endeavored to produce such a model, based on the winds that are expected to arise from the nascent neutron star of a core-collapse supernova. In this model, the proto-neutron star mass and the (asymptotic) neutrino sphere radius are assumed to be 2.0 M☉ and 10 km, respectively. Recent hydrodynamic studies indicate that there may exist difficulties in obtaining such a compact (massive and/or small in radius) remnant. Nevertheless, we utilize this set of parameter choices since previous work suggests that the third r-process peak (and thus U and Th) is hardly reached when one adopts a less compact proto-neutron star in the framework of the neutrino-wind scenario. The temperature and density histories of the material involved in the neutron-capture processes are obtained with the assumption of a steady flow of the neutrino-powered winds, with general relativistic effects taken into account. The electron fraction is taken to be a free parameter, constant with time. The r-process nucleosynthesis in these trajectories is calculated with a nuclear reaction network code including actinides up to Z = 100. The mass-integrated r-process yields, obtained by assuming a simple time evolution of the neutrino luminosity, are compared to the available spectroscopic elemental abundance data of CS 31082-001. As a result, the age of this star is determined to be 14.1 ± 2.5 Gyr, in excellent agreement with lower limits on the of the universe estimated by other dating techniques, as well as with other stellar radioactive estimates. Future measurements of Pt and Pb in this star, as well as expansion of searches for additional r-process-enhanced, metal-poor stars (especially those in which both U and Th are measurable), are of special importance to constrain the current astrophysical models for the r-process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.