Abstract

Recent advances in prokaryotic Argonaute proteins (pAgos) as potential genome-editing tools have provided new insights into the development of pAgos-based nucleic acid detection platforms. However, pAgos-based isothermal detection remains challenging. Here, we report a true isothermal amplification strategy, termed Thermus thermophilus Argonaute-based thermostable exponential amplification reaction (TtAgoEAR), to detect RNA with ultrasensitivity and single-nucleotide resolution at a constant temperature of 66 °C. We demonstrate the reliable detection of lncRNA, mRNA, and virus RNA with attomolar sensitivity and that TtAgoEAR can be applied to detect RNA targets in in cell lines, saliva, and tissues. We utilize this assay to distinguish pancreatic cancer cells carrying the mutation from wild-type cells with as little as 2 ng of RNA material. We also show that TtAgoEAR is easily adaptable to a lateral-flow-based readout. These results demonstrate that TtAgoEAR has great potential to facilitate reliable and easy RNA detection in point-of-care diagnosis and field analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call