Abstract

In the presented research, we characterised the temperature profiles and the degree of preparation for exercise of individual muscle groups of athletes We hypothesise that by means of thermal imaging studies, the effectiveness of the warm-up can be monitored to determine whether the effort of individual muscles is equal and symmetrical, which can help to avoid a potential injury. In the study, thermographic imaging was performed on a group of athletes exercising on a rowing ergometer involving almost 80% of the muscle parts of the human body for intense and symmetrical exercise. Thermovision studies have confirmed, based on the increased temperature of the muscle areas, that the rowing ergometer involves many muscle groups in training. Moreover, based on the shape of the temperature function obtained from individual body regions of interest, it was shown that conventional exercise on a rowing ergometer causes almost symmetrical work of the right and left sides of the body. Obtained temperature changes in most of the studied muscle areas showed minimum temperature reached the beginning of training—mostly phases 1 and 2. During the subsequent phases, the temperature increase was monitored, stopping at resting temperature. Significantly, temperature variations did not exceed 0.5 °C in all post-training phases. Statistical analyses did not show any significant differences in the symmetry of right and left muscle areas corresponding to the muscle location temperature. Thermal imaging may be an innovative wholly non-invasive and safe method, because checking induces adaptation processes, which may become indicators of an athlete’s efficiency. The imaging can be continuously repeated, and automatic comparison of average temperature or temperature difference may provide some clues that protect athletes from overtraining or serious injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.