Abstract

The effect of temperature and strain rate on the tensile behaviour on a series of polymeric matrix-unidirectional glass–fibre composites was studied. Dynamic mechanical analysis (DMA) experiments, as well as tensile tests at three different strain rates and three different temperatures below T g were performed on off-axis specimens of three different orientations. The strong temperature and strain rate dependence, exhibited by the materials examined, was further described theoretically by applying a formulation of finite elastoplasticity. Constitutive laws based on the material anisotropy, were applied, in combination with constitutive equations of hypoelasticity, written in their objective form. Moreover, empirical equations for the hardening coefficients, arising from the thermal activation theory, were proposed to formulate the temperature and strain rate effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.