Abstract

Gyroid, double diamond and the body-centred "Plumber's nightmare" are the three most common bicontinuous cubic phases in lyotropic liquid crystals and block copolymers. While the first two are also present in solvent-free thermotropics, the latter had never been found. Containing six-fold junctions, it was unlikely to form in the more common phases with rod-like cores normal to the network columns, where a maximum of four branches can join at a junction. The solution has therefore been sought in side-branched mesogens that lie in axial bundles joined at their ends by flexible "hinges". But for the tightly packed double framework, geometric models predicted that the side-chains should be very short. The true Plumber's nightmare reported here, using fluorescent dithienofluorenone rod-like mesogen, has been achieved with, indeed, no side chains at all, but with 6 flexible end-chains. Such molecules normally form columnar phases, but the key to converting a complex helical column-forming mesogen into a framework-forming one was the addition of just one methyl group to each pendant chain. A geometry-based explanation is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.