Abstract
Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3. TLCP exhibited nematic liquid crystalline mesophase and maintained nematic textures under all heat treatment conditions applied. The synthesized TLCP was processed into fibers using a capillary rheometer. The liquid crystalline mesophase, thermo-mechanical properties, and morphology of TLCP fibers obtained under various heat treatment conditions were investigated. The thermo-mechanical properties of the heat-treated fibers were improved compared to those of the as-spun fibers. The best results were obtained for TLCP fibers annealed at 230 °C for 9 h. The heat-treated fibers showed a well-developed microfiber morphology compared to the as-spun fibers. In the spun fibers, a skin–core morphology was observed regardless of the heat treatment conditions, and a well-developed fiber morphology better than the core area was observed in the skin area. The diameter of the fiber heat-treated at 230 °C for 9 h was approximately 60–110 nm.
Highlights
Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3
TLCP fibers were heat-treated at an annealing temperature from 190 to 250 °C to measure thermal properties, liquid crystalline mesophase, and degree of crystallinity (DC) during the same heat treatment time (3 h)
TLCP was synthesized in a molar ratio of ETA:HQ:HBA = 1:1:3 using a melt polymerization method
Summary
Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3. We will show TLCP fibers with optimal properties that appear according to various heat treatment times and temperature conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.