Abstract

In this study, thermotropic liquid-crystal/polymer microcapsules were produced via in situ suspension polymerization. The phase separation between cholesteryl liquid crystal (CLC) and poly(methyl methacrylate) (PMMA) in the droplets was induced by polymerization, resulting consequently in uniform liquid-crystal-containing polymer microcapsules. The phase behavior of the microcapsules was dependent on the loading amount of the liquid crystals and the degree of cross-linking of the polymer phase. Above 30% loading amount of CLC, the liquid crystals started to appear clearly. It was found that the spherical morphology of the microcapsules was achieved within a slight degree of cross-linking of the PMMA phase. At a high degree of cross-linking, nonspherical particles with a rough surface and deeper dents were obtained, which was due to the elastic-retractive force of the cross-linked network. The liquid-crystal/polymer microcapsules produced in this study could find great applicability in pharmaceutics and electronics as a smart drug carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.