Abstract
The thermotropic behavior of 20 chemically related glycosphingolipids (GSLs) of high purity, containing neutral and anionic carbohydrate residues in their oligosaccharide chains, was studied by high-sensitivity differential scanning calorimetry. In general, the polar head group of GSLs appears to be one of the major determinants of their phase behavior. Compared to phospholipids, the presence of the carbohydrate rather than the phosphorylcholine moiety in the polar head group and a sphingosine base in the hydrocarbon portion of GSLs reduces the effect on the transition temperature (Tm) brought about by increasing the number of methylene groups in the amide-linked fatty acyl chains. For simple neutral GSLs, the Tm's were 20-40 degrees C higher than those of phospholipids with comparable hydrocarbon chains. As the oligosaccharide chain of GSLs becomes more complex, the excess heat capacity, Tm, enthalpy (delta Hcal), and entropy of the transition decrease proportionally to the number of carbohydrate residues present in the polar head group. The Tm and delta Hcal for anionic GSLs were 16-25 degrees C and 1-3 kcal mol-1 lower than those of neutral GSLs with comparable oligosaccharide chains. A linear dependence of delta Hcal with Tm was found. However, the slopes of these plots were different for neutral and for anionic GSLs, suggesting different types of intermolecular organizations for the two. The Tm and delta Hcal were linearly dependent on the molecular area of both neutral and anionic GSLs; this indicated that the influence of the complexity of the polar head group in GSLs for establishing the thermodynamic behavior may be mediated by the intermolecular spacings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.