Abstract

The chemical and phase composition and morphological features of the surface nanostructure have been studied by the methods of high-resolution scanning electron microscopy, X-ray microprobe analysis, and atomic force microscopy in bismuth ferrite single crystals. This structure was formed as a result of the thermostimulated surface segregation after annealing in air or vacuum at the pressure of 10−4 Pa. It has been experimentally found that, at temperatures less than 500°C, Bi2F4O9 nanoparticles were formed due to the selective diffusion of iron atoms to the surface. Starting from 300°C in vacuum and 450°C in air, the segregating atom type changed and nanophases with high bismuth concentration (sillenites Bi26 − xFexO39 and Bi2O3 appeared in some regions. The partial orientation of new phases has been observed in some surface regions. A probable mechanism of the described phenomenon that represents a combination of selective intrinsic mass-transport of atoms from the bulk to the surface and their thermal evaporation has been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call