Abstract

We discuss the statistical properties of small mechanothermodynamic systems (one- and two-particle cases) subject to nonlinear coupling and in contact with standard Gaussian reservoirs. We use a method that applies averages in the Laplace-Fourier space, which relates to a generalization of the final-value theorem. The key advantage of this method lies in the possibility of eschewing the explicit computation of the propagator, traditionally required in alternative methods like path integral calculations, which is hardly obtainable in the majority of the cases. For one-particle equilibrium systems we are able to compute the instantaneous (equilibrium) probability density functions of injected and dissipated power as well as the respective large deviation functions. Our thorough calculations explicitly show that for such models nonlinearities are irrelevant in the long-term statistics, which preserve the exact same values as computed for linear cases. Actually, we verify that the thermostatistical effect of the nonlinearities is constricted to the transient towards equilibrium, since it affects the average total energy of the system. For the two-particle system we consider each element in contact with a heat reservoir, at different temperatures, and focus on the problem of heat flux between them. Contrarily to the one-particle case, in this steady state nonequilibrium model we prove that the heat flux probability density function reflects the existence of nonlinearities in the system. An important consequence of that it is the temperature dependence of the conductance, which is unobserved in linear(harmonic) models. Our results are complemented by fluctuation relations for the injected power (equilibrium case) and heat flux (nonequilibrium case).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.