Abstract

We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simulations, that the overdamped motion of interacting particles at T=0, where T is the temperature of a thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a linear combination of Tsallis and Boltzmann-Gibbs entropies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call