Abstract
The purpose of the study is isolation and application of novel Hot spring bacterial enzymes. It also reports on purification and characterization of thermostable α-amylase from a newly hot spring isolate, Exiguobacterium sp. This thermostable amylase is Ca2+-independent an added improvement in starch saccharification process at a higher temperature because it removes the addition of Ca2+ for improving the stability of amylases. Maximum enzyme activity was obtained at 45°C at pH 8.5 and stability at concentration of 3.0% NaCl. Thermostable α-amylase from Exiguobacterium sp was purified by 3.9 fold with 54.6% recovery and specific activity was 1083U/ml. The molecular weight of α-amylase was 54kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Apparent Km and Vmax value was 5.88mg/ml and 250µmol/min/ml, respectively for the hydrolysis of soluble starch. An initial analysis of the circular dichroism (CD) spectrum in the ultraviolet range revealed that the amylase is predominantly turn structure and a detailed structural composition showed alpha helix 10.8%, Beta sheet 27.1%, Turn 29.8% and Randomness 32.3% respectively. The amylase combined with soap-nut extract was able to de stain blood stained cloth within 30min
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.